| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 | 
							- <!doctype html>
 
- <html>
 
-   <head>
 
-     <title>CodeMirror 2: sTeX mode</title>
 
-     <link rel="stylesheet" href="../../lib/codemirror.css">
 
-     <script src="../../lib/codemirror.js"></script>
 
-     <script src="stex.js"></script>
 
-     <link rel="stylesheet" href="../../theme/default.css">
 
-     <style>.CodeMirror {background: #f8f8f8;}</style>
 
-     <link rel="stylesheet" href="../../css/docs.css">
 
-   </head>
 
-   <body>
 
-     <h1>CodeMirror 2: sTeX mode</h1>
 
-      <form><textarea id="code" name="code">
 
- \begin{module}[id=bbt-size]
 
- \importmodule[balanced-binary-trees]{balanced-binary-trees}
 
- \importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}
 
- \begin{frame}
 
-   \frametitle{Size Lemma for Balanced Trees}
 
-   \begin{itemize}
 
-   \item
 
-     \begin{assertion}[id=size-lemma,type=lemma] 
 
-     Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree} 
 
-     of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
 
-      $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of
 
-     \termref[cd=graphs-intro,name=node]{nodes} at 
 
-     \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has
 
-     \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.
 
-    \end{assertion}
 
-   \item
 
-     \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}
 
-       \begin{spfcases}{We have to consider two cases}
 
-         \begin{spfcase}{$i=0$}
 
-           \begin{spfstep}[display=flow]
 
-             then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so
 
-             $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$.
 
-           \end{spfstep}
 
-         \end{spfcase}
 
-         \begin{spfcase}{$i>0$}
 
-           \begin{spfstep}[display=flow]
 
-            then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes 
 
-            \begin{justification}[method=byIH](IH)\end{justification}
 
-           \end{spfstep}
 
-           \begin{spfstep}
 
-            By the \begin{justification}[method=byDef]definition of a binary
 
-               tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has
 
-             two children that are at depth $i$.
 
-           \end{spfstep}
 
-           \begin{spfstep}
 
-            As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
 
-             leaves.
 
-           \end{spfstep}
 
-           \begin{spfstep}[type=conclusion]
 
-            Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.
 
-           \end{spfstep}
 
-         \end{spfcase}
 
-       \end{spfcases}
 
-     \end{sproof}
 
-   \item 
 
-     \begin{assertion}[id=fbbt,type=corollary]	
 
-       A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes.
 
-     \end{assertion}
 
-   \item
 
-       \begin{sproof}[for=fbbt,id=fbbt-pf]{}
 
-         \begin{spfstep}
 
-           Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree
 
-         \end{spfstep}
 
-         \begin{spfstep}
 
-           Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$.
 
-         \end{spfstep}
 
-       \end{sproof}
 
-     \end{itemize}
 
-   \end{frame}
 
- \begin{note}
 
-   \begin{omtext}[type=conclusion,for=binary-tree]
 
-     This shows that balanced binary trees grow in breadth very quickly, a consequence of
 
-     this is that they are very shallow (and this compute very fast), which is the essence of
 
-     the next result.
 
-   \end{omtext}
 
- \end{note}
 
- \end{module}
 
- %%% Local Variables: 
 
- %%% mode: LaTeX
 
- %%% TeX-master: "all"
 
- %%% End: \end{document}
 
- </textarea></form>
 
-     <script>
 
-       var editor = CodeMirror.fromTextArea(document.getElementById("code"), {});
 
-     </script>
 
-     <p><strong>MIME types defined:</strong> <code>text/stex</code>.</p>
 
-   </body>
 
- </html>
 
 
  |