| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 | <!doctype html><html>  <head>    <title>CodeMirror 2: sTeX mode</title>    <link rel="stylesheet" href="../../lib/codemirror.css">    <script src="../../lib/codemirror.js"></script>    <script src="stex.js"></script>    <link rel="stylesheet" href="../../theme/default.css">    <style>.CodeMirror {background: #f8f8f8;}</style>    <link rel="stylesheet" href="../../css/docs.css">  </head>  <body>    <h1>CodeMirror 2: sTeX mode</h1>     <form><textarea id="code" name="code">\begin{module}[id=bbt-size]\importmodule[balanced-binary-trees]{balanced-binary-trees}\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}\begin{frame}  \frametitle{Size Lemma for Balanced Trees}  \begin{itemize}  \item    \begin{assertion}[id=size-lemma,type=lemma]     Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree}     of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set     $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of    \termref[cd=graphs-intro,name=node]{nodes} at     \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has    \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.   \end{assertion}  \item    \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}      \begin{spfcases}{We have to consider two cases}        \begin{spfcase}{$i=0$}          \begin{spfstep}[display=flow]            then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so            $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$.          \end{spfstep}        \end{spfcase}        \begin{spfcase}{$i>0$}          \begin{spfstep}[display=flow]           then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes            \begin{justification}[method=byIH](IH)\end{justification}          \end{spfstep}          \begin{spfstep}           By the \begin{justification}[method=byDef]definition of a binary              tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has            two children that are at depth $i$.          \end{spfstep}          \begin{spfstep}           As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain            leaves.          \end{spfstep}          \begin{spfstep}[type=conclusion]           Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.          \end{spfstep}        \end{spfcase}      \end{spfcases}    \end{sproof}  \item     \begin{assertion}[id=fbbt,type=corollary]	      A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes.    \end{assertion}  \item      \begin{sproof}[for=fbbt,id=fbbt-pf]{}        \begin{spfstep}          Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree        \end{spfstep}        \begin{spfstep}          Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$.        \end{spfstep}      \end{sproof}    \end{itemize}  \end{frame}\begin{note}  \begin{omtext}[type=conclusion,for=binary-tree]    This shows that balanced binary trees grow in breadth very quickly, a consequence of    this is that they are very shallow (and this compute very fast), which is the essence of    the next result.  \end{omtext}\end{note}\end{module}%%% Local Variables: %%% mode: LaTeX%%% TeX-master: "all"%%% End: \end{document}</textarea></form>    <script>      var editor = CodeMirror.fromTextArea(document.getElementById("code"), {});    </script>    <p><strong>MIME types defined:</strong> <code>text/stex</code>.</p>  </body></html>
 |